Radiological characterisation of photon radiation from ultra-high-intensity laser-plasma and nuclear interactions.
نویسندگان
چکیده
With the increasing number of multi-terawatt (10(12) W) and petawatt (10(15) W) laser interaction facilities being built, the need for a detailed understanding of the potential radiological hazards is required and their impact on personnel is of major concern. Experiments at a number of facilities are being undertaken to achieve this aim. This paper describes the recent work completed on the Vulcan petawatt laser system at the CCLRC Rutherford Appleton Laboratory, where photon doses of up to 43 mSv at 1 m per shot have been measured during commissioning studies. It also overviews the shielding in place on the facility in order to comply with the Ionising Radiation Regulations 1999 (IRR99), maintaining a dose to personnel of less than 1 mSv yr(-1) and as low as reasonably practicable (ALARP).
منابع مشابه
Different Aspects of Ultra-weak Photon Emissions: A Review Article
All biological samples emit ultra-low intensity light without any external stimulation. Recently, scientific communities have paid particular attention to this phenomenon, known as ultra-weak photon emission (UPE). UPE has been introduced in the literature as an alternative for biophoton, low-level chemiluminescence and ultra-weak bioluminescence, while it differs from ordinary bioluminescence,...
متن کاملUltra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma
We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...
متن کاملشبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملPositron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser
Numerous proposals to induce nuclear transformations by intense lasers ~see, e.g., Ref. 1! predicted exceedingly small output of ‘‘nuclear radiation’’ ~positrons, gammaphotons, neutrons, and fission fragments!, even for the laser intensity still out of reach. In fact, efficient production of nuclear radiation was not the subject of those proposals; as a result, optimal choice of processes and t...
متن کاملSelf-compression and catastrophic collapse of photon bullets in vacuum
Photon–photon scattering, due to photons interacting with virtual electron–positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense lase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of radiological protection : official journal of the Society for Radiological Protection
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2006